

GRADE: XII Date: MT 2 (2024-25) APPLIED MATHEMATICS	Marks: 20 Time: 1 hours
--	----------------------------

Name:

Class & Section:

Q.No.	Questions				
	SECTION A				
1	If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ the value of AB is a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	1			
	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then the value of $A + A^T$ a) $\begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$ c) $\begin{bmatrix} 2 & 8 \\ 5 & 5 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 5 \\ 8 & 5 \end{bmatrix}$ d) $\begin{bmatrix} 2 & -5 \\ 5 & 8 \end{bmatrix}$	1			
3	If $\begin{bmatrix} p+q & 2 \\ 5 & q \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 2 \end{bmatrix}$ then the value of p is a) 4 c) 5 b) 6 d) 8	1			
4	The value of the determinant $\begin{vmatrix} 2 & 2 & 14 \\ 1 & 3 & 21 \\ 3 & 5 & 35 \end{vmatrix}$ is a) 0 c) 14 b) 5 d) 35	1			
5	a) 0 c) 14 b) 5 d) 35 If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$ then a) $x = 0$, $y = 5$ c) $x = 5$, $y = 0$ b) $x = y$ d) none of these	1			
	SECTION B				
6	If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ show that $A^2 - 4A - 5I = 0$	2			

7	Find the adjoint of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$						
8	If $A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$ Find the following a) A+B b) 3A-C						
_	SECTION C						
9	Solve the following system $6x + y - 3z = 5$ x + 3y - 2z = 5 2x + y + 4z = 8	em of equation	ıs by cramer's ı	rule	3		
10	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ and verify that $A \cdot A^{-1} = A^{-1} \cdot A = I$						
11	CASE STUDY For a two sector economy with production sector I and II, the intersectoral demand and final demand as follow:						
	Producing	Rece	iving sector	Final			
	sector	I	II	demand			
	I	264	410	206			
	II	528	204	292			
	 a) Find the technical coefficients. b) Find the matrix of technical coefficients. c) Find the Leontief matrix. 						

Prepared by

Checked by